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1. Introduction

The Standard Model (SM) describes the electroweak (EW) interactions with an incredible

precision. However, the instability of the Higgs potential under radiative corrections signals

our ignorance over the real mechanism of electroweak symmetry breaking (EWSB) and has

lead to many extensions beyond the SM. The upcoming LHC era is likely to provide us the

tools to check some of the proposed solutions to this problem.

Recently, Grinstein, O’Connell and Wise proposed a new extension of the SM [1],

based on the ideas of Lee and Wick [2, 3] for a finite theory of quantum electrodynamics.

The building block of the Lee-Wick proposal is to consider that the Pauli-Villars regulator

describes a physical degree of freedom. In the Lee-Wick Standard Model (LWSM), this idea

is extended to all the SM in such a way that the theory is free from quadratic divergences

and the hierarchy problem is solved. Every SM field has a LW-partner with an associated

LW-mass, these masses are the only new parameters in the minimal LWSM. A potential

problem in this model is that the LW-states violate causality at the microscopic level due
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to the opposite sign of their propagators. However the authors of ref. [1] argued that there

is no causality violation on a macroscopic scale provided that the LW-particles are heavy

and decay to SM-particles. The LWSM can be thought as an effective theory coming from

a higher derivative theory. However, to insure perturbative unitarity, higher dimension

operators cannot be of any type, only those compatible with a LW effective Lagrangian are

acceptable [4]. In ref. [1] it was shown with a specific example that unitarity is preserved

due to the unusual sign of the LW-particles width. Further considerations on the unitarity

of the theory have been presented extensively in the previous literature [5 – 9], the non-

perturbative formulation has been discussed in [10 – 14] and the one-loop renormalization

of LW-gauge theories has been discussed in [15].

Recent work discussed the suppression of flavor changing neutral currents [16], gravi-

tational LW particles [17] and the possibility of coupling the effective theory to heavy par-

ticles [18]. On the phenomenological side, the implications for LHC [19, 20] and ILC [21]

have also been discussed.

The LWSM does not provide any information on the origin of the LW-masses. However,

in order to solve the hierarchy problem these masses should not be heavier than a few TeV.

On the other hand, the LW particles can not be too light without getting in conflict with

EW precision observables [22]. Therefore the aim of our work is to carry out an analysis of

the electroweak precision tests (EWPT) and derive bounds on the masses of the LWSM.

Since the main motivation to introduce the LWSM was to solve the hierarchy problem, large

LW-masses will be a source of fine-tuning and will partially spoil the original motivation.

In this way the success of the LWSM is associated to its efficiency to pass the EWPT

without introducing a severe fine-tuning in the theory.

On the experimental side, determining the parameter space allowed by the EWPT is

crucial to know whether the LWSM could be tested or not in the next experiments, in

particular at the LHC.

With these motivations we have performed an analysis of the EW observables in the

LWSM. As in the original formulation [1], we have assumed the principle of minimal flavor

violation (MFV) to simplify the flavor structure of the model. The most stringent con-

straints come from the S and T Peskin-Takeuchi parameters [23]. We present our results

as lower bounds on different combinations of the LW-masses of the gauge and quark fields.

If we assume degenerate LW-masses for all the fields, the LW-scale allowed by the EWPT

is of order 5 TeV and there is little chance to test this model at the LHC. Relaxing the

constraint on equal masses, it is possible to find configurations in the parameter space

where one of the masses can be as low as 2.4 − 3.5 TeV, at the price of rising the other

masses to be & 5− 8 TeV. This situation is more favorable from the experimental side and

it might be accessible at the LHC.

Concerning the fine-tuning of the model, a heavy Higgs gives further contributions to

S and T pointing in the same direction as the contributions from the LW-fields, and for this

reason is strongly disfavoured. Thus, in order to obtain a light Higgs one has to cancel the

rather large contributions to the Higgs mass from the LW-particles running in the loops,

that are proportional to the LW-masses squared. We estimate the needed tuning of the

model to be at least of order a few per cent.
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A possible way to relax the constraints from the EWPT would be to generate an

extra positive contribution to T without increasing at the same time the S parameter.

By including a fourth generation of fermions of SM-type, with their corresponding LW-

partners, it is possible to generate a large T , without generating a too large S. To obtain a

T parameter of the needed size one has to assume an approximate custodial symmetry for

the Yukawas of the fourth generation. We show that for vector LW-masses of order 3TeV

and Yukawa masses of the fourth generation in the range 0.2 − 1.2 TeV, it is possible to

have all the fermionic LW-masses in the range 0.4 − 1.5 TeV and pass the EWPT.

The paper is organized as follows. In section 2 we give a very brief description of the

LWSM, in sections 3 and 4 we compute the tree and radiative contributions to the EW

precision parameters. In section 5 we scan over the parameter space of the model and

present a detailed analysis of the allowed regions. We consider the extension of the LWSM

by including a fourth generation in section 6. We conclude in section 7 and show the details

of some of the calculations in the appendices.

2. The LWSM

The LWSM was originally formulated introducing a higher derivative term for each of

the SM-fields. The theory contains one new parameter for every SM-field, the LW-mass

corresponding to the dimensional coefficient of the associated higher derivative term. The

authors of ref. [1] introduced new LW-fields and showed that it is possible to reformulate

the theory in terms of these fields in such a way that there are no higher derivative terms

in the Lagrangian. In this formulation the LW-masses are the masses of the LW-fields and,

although the LW-fields mix with the SM ones, the particle content of the theory is more

transparent. The LW-fields have the same quantum numbers as their SM partners and

the couplings between the SM and LW-fields are the same as the SM couplings, although

the signs of the interactions are not always the usual ones. It is possible to consider even

higher derivative terms (e.g. six-derivative terms) that will in general lead to additional

LW-states, however we will not consider this case. We refer the reader to ref. [1] for the

details and quote here some specific interaction terms that are useful to understand the

contributions to the EW observables. We will denote the fields associated to the LW-states

with a tilde.

The quadratic Lagrangian for the gauge SM and LW-fields, after setting the Higgs to

its vacuum expectation value (VEV), is:

L2g = −1

2
tr

(

BµνB
µν − B̃µνB̃

µν +WµνW
µν − W̃µνW̃

µν
)

−1

2
(M2

1 B̃µB̃
µ +M2

2 W̃
a
µW̃

µ
a ) +

g2
2v

2

8
(W 1,2

µ + W̃ 1,2
µ )(W µ

1,2 + W̃ µ
1,2)

+
v2

8
(g1Bµ + g1B̃µ − g2W

3
µ − g2W̃

3
µ)(g1B

µ + g1B̃
µ − g2W

µ
3 − g2W̃

µ
3 ), (2.1)

where Wµν = ∂µWν − ∂νWµ,Wµ = W a
µT

a and similar for the other fields, and g1,2 are the

hypercharge and weak couplings. The sign of the kinetic and mass terms of the LW-fields
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are opposite to the usual ones. This sign is responsible for the cancellation of the quadratic

divergences as well as the microscopic causality violations by the LW-particles.

The quadratic Lagrangian for the fermionic fields after setting the Higgs to its VEV

is:

L2ψ =
∑

ψ=qL,uR,dR

ψ̄i 6∂ψ −
∑

ψ=q,u,d

¯̃ψ(i 6∂ −Mψ)ψ̃

−mu(ūR − ¯̃uR)(quL − q̃uL) −md(d̄R − ¯̃
dR)(qdL − q̃dL) + h.c., (2.2)

where a generation index is understood, qt = (qu, qd) denotes the SU(2)L doublet, mu,d =

λu,dv/
√

2 and for simplicity we have omitted the leptonic sector. Different to the SM chiral

fermions, the LW-fermions combine into Dirac spinors of masses Mq,u,d. We will assume

that the LW-fermions transforming in the same representation of the gauge symmetries

have the same mass, this is compatible with the MFV principle [24]. Then the matrices

Mψ of eq. (2.2) are proportional to the identity and we will trade Mψ → 1lMψ, with Mψ a

scalar parameter. For effects on FCNC when MFV is not satisfied see ref. [16].

The quadratic Lagrangian for the Higgs field is:

L2H = (∂µH)†(∂µH) − (∂µH̃)†(∂µH̃) +M2
hH̃

†H̃ − m2
h

2
(h− h̃)2 , (2.3)

where Ht = (h+, v+h+iP√
2

) and H̃t = (h̃+, h̃+iP̃√
2

), m2
h = λv2/2 and Mh is the LW-mass.

Only the physical Higgs field h and its LW-partner h̃ mix.

The gauge fermionic interactions are:

Lint = −
∑

ψ=qL,uR,dR

[g1ψ̄(6B+ 6B̃)ψ + g2ψ̄(6W+ 6W̃ )ψ]

+
∑

ψ=q,u,d

[

g1
¯̃
ψ(6B+ 6B̃)ψ̃ + g2

¯̃
ψ(6W+ 6W̃ )ψ̃

]

. (2.4)

Note that the LW-fermions couple to the gauge fields with the opposite sign compared with

the SM-fermions.

For LW-mass scales much larger than the top mass the mixings between the light SM-

fermions and the LW-fermions can be neglected. For this reason only the third generation

will contribute to the EW precision parameters. In appendix A we diagonalize the fermionic

mass matrix. In eqs. (A.5-A.9) we show the physical masses and the matrices connecting

the flavor and mass basis for Mq 6= Mu,d. The case for Mq = Mu,d has been considered in

ref. [20].

Finally we want to comment on the naturalness of the model. The authors of ref. [1]

showed explicitly that the gauge one loop contributions to the Higgs mass are only loga-

rithmically sensitive to the cut-off of the theory. We want to stress that this contribution is

proportional to the square of the vector LW mass, Mg, δm
2
h ≃ 3C2(N)g2

16π2 M2
g log Λ2

M2
g
, in such

a way that the quadratic divergence is recovered when the LW-mass is divergent. The same

effect is present in the fermionic contribution to the Higgs mass, δm2
h ≃ Ncλ

2

8π2 M
2
f log Λ2

M2
f

,

with Mf the fermionic LW-mass. Therefore, to have a light Higgs in a natural way, the LW-

vectors (fermions) should be lighter than ∼ 2 TeV (∼ 600 GeV), with a mild dependence

on the cut-off Λ.
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3. Tree level contributions to the EW precision parameters

We discuss in this section the tree level contributions to the EW precision parameters.

We will show that the only parameters that are important in the LWSM are the oblique

parameters S and T . In the next section we will compute the 1-loop corrections to S and

T and show that the radiative contributions can be as large as the tree level ones.

In the LWSM the mixings between the gauge bosons and their LW partners induce

non-canonical couplings for the SM fermions.1 A shift in the gauge fermion couplings

can be reabsorbed into the oblique parameters. Therefore, to correctly define the oblique

parameters S, T, U it is necessary to properly normalize the couplings between the fermions

and the gauge bosons.2 We find it useful to work in the effective theory obtained after

integrating out the heavy LW fields at tree level. Setting the Higgs field to its VEV,

the interactions in the effective theory that are important to normalize the gauge fermion

couplings are:

Leff = −g2W µ 1J1
µ

[

1 − g2
2v

2

g2
2v

2 − 4M2
2

]

− g2W
µ 2J2

µ

[

1 − g2
2v

2

g2
2v

2 − 4M2
2

]

−J3
µ

[

g2W
µ 3 − (g2W

µ 3 − g1B
µ)

g2
2v

2M2
1

g2
1v

2M2
2 + (g2

2v
2 − 4M2

2 )M2
1

]

−JYµ
[

g1B
µ − (g1B

µ − g2W
µ 3)

g2
1v

2M2
2

g2
1v

2M2
2 + (g2

2v
2 − 4M2

2 )M2
1

]

(3.1)

where J iµ are the usual currents of SM fermions, and we have considered that the momentum

of the LW-vectors is small, p2 ≪M2
i . Since the coefficients in eq. (3.1) are the same for all

the generations, the same redefinition of the gauge fields leads to canonical gauge couplings

for all the SM fermions:

Leff = −g2
∑

a=1,2,3

W µ aJaµ − g1B
µJYµ . (3.2)

The gauge kinetic and mass terms induce contributions to the oblique parameters after the

gauge field redefinitions. The tree level contributions to S and T are:

S = 4πv2

(

1

M2
1

+
1

M2
2

)

+ O
(

v4

M4
i

)

, (3.3)

T = π
g2
1 + g2

2

g2
2

v2

M2
1

. (3.4)

Eq. (3.4) is valid to all order in v in the tree level approximation. Moreover, notice that

the sign difference between eq. (3.4) and the result of ref. [1] is due to the additional

contribution coming from the redefinition of the gauge fields mentioned above. We can see

that for M1 → ∞ the tree level T parameter cancels, as expected since in this limit we

partially recover a custodial symmetry in the LW-gauge sector.

1See ref. [25] for a discussion of this effect in another context.
2This observation was overlooked in ref. [1].
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H̃

H̃(a)

H

Ã(b)

H̃

(c)

Figure 1: One-loop Feynman diagrams contributing to the oblique parameters involving the Higgs

sector.

The U parameter is of order O
(

v4

M4
i

)

and will be neglected in our analysis.

The effective Lagrangian also includes four fermion operators generated by exchange of

LW vector fields, with coefficients of order g2
i /(2M

2
i ). The constraints from these operators

are weaker than the constraints from the oblique parameters.

The mixings of SM and LW fermions also induce non-canonical couplings, this effect

could be important for the b-quark. The mixings between bL and the LW fermions are of

order mb/Mq. Therefore to protect the ZbLb̄L coupling that is in agreement with the SM

prediction at the 0.25%, it is enough to have a LW mass Mq ≥ O(100GeV). On the other

hand, the experimental measurements of the forward-backward asymmetry of the bottom

quark indicate a deviation in the ZbRb̄R coupling of order 25%, δgbR ∼ 0.02 . Since in the

LWSM the bR mixings are of order mb/Md, to generate the required anomalous coupling

at tree level we would need a very low mass Md ∼ O(10 GeV), already excluded.3

4. Radiative contributions to S and T

In this section we compute the one-loop contributions to the oblique parameters S and T .

The most important contributions come from the third generation of LW-fermions.

4.1 Contributions to T from the gauge-Higgs sector

The one-loop Feynman diagrams involving the LW-Higgs field H̃ are shown in figure 1.

We discuss first the contributions to T . There is no custodial symmetry in the LWSM

protecting the T parameter. Thus there is no reason to expect finite radiative contributions

to T . As expected from the general arguments of Ref [1] there are no quadratic divergences,

however, we obtain corrections from the LW-Higgs sector that are logarithmically sensitive

to the UV cut-off of the theory.

We consider the different diagrams of figure 1 in some detail. Since the charged and

pseudoscalar LW-Higgs fields do not mix with their SM partners, the diagrams (a) and (c)

of figure 1 cancel in the combination Π11 − Π33 and do not contribute to T .

The diagrams of figure 1(b) with one SM-Higgs and one LW-gauge field can be explicitly

computed. For M1,2 ≫ m2
W we can perform an expansion in Higgs-VEV insertions. The

3To agree with the experimental data a δgb
R ∼ 0.17 is also possible, but it would require even lighter

new particles.
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leading contribution comes from the zeroth order term, i.e.: we neglect the mixings of

the LW-gauge fields due to the mass insertions. In this limit the Feynman diagrams give

Π11(0) − Π33(0) ≃ g21g
2
2v

2

64π2

m2
h

M2
1

log Λ2

m2
h

. A brief explanation of this result is as follows: there

is a factor g1g2v/2 for each vertex, the factor 1/(16π2) comes from the loop and the sign is

different from the SM-Higgs contribution because the LW propagator has an extra minus

sign. Again, this contribution to T cancels for infinite M1.

From the previous result we obtain T ≃ g21+g22
4π

m2
h

M2
1

log Λ2

m2
h

, that is logarithmically di-

vergent with the cut-off. However, for a light Higgs and LW-gauge masses larger than

∼ 2TeV, these contributions are smaller than the tree level ones, eq. (3.4), even in the

limit of Λ ∼ MP l. As we will show in the next section, they are also smaller than the

fermionic contributions.

There are contributions to T from the diagram of figure 1(c), replacing the LW-Higgs

propagator by a LW-gauge one. At leading order in a mass insertion expansion, this

contribution exactly cancels because the SU(2)L LW-gauge fields are degenerate. There is

a non-vanishing contribution at second order but it is suppressed by a factor m2
W/M

2
2 , and

can be neglected.

4.2 Contributions to S from the gauge-Higgs sector

We discuss the LW-Higgs sector contributions to S from the figure 1. For mh ≪ Mh

all the LW-Higgs components are degenerate, thus at leading order in a mass insertion

expansion the Feynman diagrams corresponding to figure 1(a) cancel out. The first non-

trivial contribution is due to the splitting between the neutral LW-Higgs and the other

LW-Higgs components. This gives a small S ≃ m2
h

24πM2
h

.

The Feynman diagram of figure 1(b) gives a small contribution also, S ≃
1
2π

(

m2
W

M2
2

+
m2

Z
s2

M2
1

)

, with s = sin θW .

This contributions to S can be neglected compared with the tree level one, eq. (3.3).

4.3 Fermionic contributions to T

The T parameter measures the amount of isospin breaking, thus the third generation,

having the largest Yukawa couplings, gives the dominant contribution compared with the

other fermions. We will show that the fermionic contributions of figure 2 dominate also

over the other loop corrections. To check our calculations we have computed them in two

different ways. We refer the reader to the appendices for the details.

One way to compute the fermionic T is by working in the diagonal mass basis. In-

serting the rotation matrices Su,dL,R, defined in eqs. (A.8) and (A.9), into the gauge fermion

interactions, eq. (2.4), we obtain the couplings between the fermions and the SM-gauge

fields in the mass basis. Since there are no mixings in this basis, we just have to sum over

all the possible fermionic combinations in the loop diagram of figure 2(a). The matrices

Su,dL,R have been calculated in a perturbative mass insertion expansion, then the results

obtained by this method are valid for mu,d ≪Mu,d,q. To obtain a non vanishing T one has

to consider at least four mass insertions, this implies that we have to expand Su,dL,R to that

– 7 –
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ψ

ψ′
(a)

u, ũ

u, ũ

q, q̃ q, q̃

(c)

q, q̃

q, q̃

u, ũ

u, ũ

(b)

Figure 2: One-loop Feynman diagrams contributing to the oblique parameters involving the

fermionic sector. Diagram (a) is the fermionic loop in the mass basis. Diagrams (b,c) are the

first non-trivial contributions from the up sector expanding in Yukawa mass insertions.

order. The result is almost independent on Md because the down Yukawa is much smaller

than the up Yukawa for the third generation.

For small LW-fermionic masses (Mq,u & mt) the convergence of the mass insertion

series is rather slow. In fact, for masses Mq,u . 1 TeV we have checked that the first

non-trivial contribution in the perturbative expansion has large deviations from the non-

perturbative one, and can not be trusted. For this reason we will consider also the resum-

mation of the mass insertion series. The diagram of figure 2(c) gives the first non-trivial

contribution to T in the flavor basis in the mass insertion expansion. For Π33, the fermionic

propagators (at zeroth order in mass insertions) attached to the gauge vertex could be ei-

ther qL or q̃, and the fermionic propagators between the Yukawas could be uR or ũ (dR or

d̃) for the up (down) contribution. There is a similar diagram for Π11. Using the results

of appendices B and C it is possible to obtain the fermionic vacuum polarizations to all

orders in the mass insertions. The result for Π11(0) − Π33(0) is:

Π11(0) − Π33(0) =
g2
2Nc

4

∫

d4p

(4π)2

[

p6 − 4p4M2
q + p2M4

q

(p2 −M2
q )

4
+

1

p2
− 2

p2 − 2M2
q

(p2 −M2
q )2

]

×

×
[

m2
uM

2
u(p2 −M2

q )

p4(M2
u − p2) +M2

q (m
2
uM

2
u + p2(p2 −M2

u))

−
m2
dM

2
d (p

2 −M2
q )

p4(M2
d − p2) +M2

q (m2
dM

2
d + p2(p2 −M2

d ))

]2

(4.1)

where mu,d stand for the masses of the third generation. Eq. (4.1) includes the contribution

from the SM-fermions, that must be subtracted to obtain T . This term is obtained by

taking the limit of infinite LW-masses.

The resulting T parameter is negative and it increases for small LW-masses. We make

an analysis of the results and its consequences for the LHC in section 5.

4.4 Fermionic contributions to S

Perturbatively the fermionic S parameter counts the number of active fermions in the EW

sector. However, at one loop, doublets (N,E) of chiral fermions contribute with S ∼
1/(6π)[1 − 2Y log(m2

N/m
2
E)], whereas for vector-like fermions the constant term is absent,

– 8 –
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S ∼ 2Y/(3π) log(m2
N/m

2
E). The LW-fermions are vector-like and the isospin splitting

within a doublet is due to the mixings with the SM fields through the Yukawa couplings.

Therefore, for Mq,u ≫ mt we expect the LW-fermions to induce a small S at loop level.

However, due to the mixings between the SM and LW-fermions, the contributions to S are

not so simple, and for Mq,u ∼ mt the isospin splitting could be large.

The fermionic one loop Feynman diagrams contributing to S are shown in figure 2. We

have computed them using the two methods of section 4.3, by working in the diagonal mass

basis and also resumming the mass insertions in the flavor basis. For Mq,u & 1.5 TeV the

exact one-loop calculation computed in the flavor basis and the perturbative calculation

in the mass basis agree very well. However, for Mq,u . 1 TeV the perturbative result has

large deviations from the full result. We have checked that including higher order terms in

the mass insertion expansion the convergence is improved for low values of Mq,u. We will

use the vacuum polarization resumming the mass insertions in our analysis (an expression

similar to eq. (4.1), but much longer, can be obtained also in this case, however we omit

it for the sake of brevity). For some details on this calculations see the appendix C. The

important result is that the fermionic S is negative and small compared with the tree level

S of eq. (3.3).

5. Analysis of the EWPT

We make a numerical analysis of the LWSM by scanning over the parameter space of the

model: Mq,Mu,M1,M2. As we argue in section 4.3 the dependence on Md is negligible

(we have also checked by a numerical calculation that this is true), thus from now on we

fix Md = 1TeV. As argued in sections 4.1 and 4.2, our results are almost independent on

mh and Mh provided that the Higgs is light, mh ∼ 114 GeV, and the LW-Higgs is sensibly

heavier than the SM-Higgs. In any case, as we will show, a heavy SM-Higgs is strongly

disfavored by the EWPT.

To obtain a better understanding of the importance of the S and T parameters in

constraining the model we show in figure 3 the 68% and 95% Confidence Level contours in

the (S, T ) plane, as obtained from the LEP Electroweak Working Group [26], together with

the LWSM predictions for several values of the LW-masses. It is clear from figure 3 that

there is no region in the parameter space lying within the 68% Confidence Level contour (we

have considered LW-masses not larger than 10 TeV). There is however a small but sizable

region of the 95% Confidence Level contour that is covered. Choosing all the LW-masses to

be equal corresponds to the large yellow points in figure 3. In this case only masses above

5 TeV enter into the allowed region. The other coloured points in figure 3 correspond to

one of the LW-masses being light (lighter than 4TeV), whereas the black dots are for all

the LW masses being heavier than 4TeV. We can see that most of the configurations with

light new particles do not satisfy the EWPT, whereas most of the configurations that pass

the EWPT do not have any light new particle.

It is also evident from figure 3 that most of the configurations have a too large positive

S and negative T parameters. The positive S contribution is mainly generated at tree

level by the non-canonical fermionic gauge couplings, see eq. (3.3). The T parameter has a
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Figure 3: 68% and 95% Confidence Level contours in the (S, T ) plane, and LWSM predictions.

The black dots indicate points where all four masses M1 , M2, Mq , Mu are larger than 4TeV.

Coloured points correspond to cases where at least one mass is less than 4 TeV. The colour indicates

which mass is below 4 TeV: green, magenta, red, blue dots correspond to M1 , M2, Mq , Mu less

than 4TeV, respectively. The yellow dots correspond to taking all masses equal and 7,6,5,4 . . . TeV,

from left to right.

tree level positive contribution, eq. (3.4), and a negative one-loop contribution due to the

third generation of LW-fermions. For light LW-fermions the one-loop fermionic correction

dominates over the tree level one resulting in a negative T . A light LW-vector could cancel

the large negative T generated by the fermions, but generating at the same time a too

large S.

We quote now the minimum values of LW-masses that pass the EWPT. The lightest

M1 (M2) lying inside the 95% contour is M1 ≃ 3.2 TeV (3.8 TeV), and corresponds to a

green (magenta) point in figure 3. For a green (magenta) point to lie inside the ellipse,

M2,Mq,Mu (M1,Mq,Mu) have to be heavier than ∼ 5.4, 5.2, 3.6 TeV (∼ 7.0, 8.1, 6.0 TeV),

respectively. The lightest Mq (Mu) inside the ellipse is Mq ≃ 3.5 TeV (Mu ≃ 2.4 TeV). For

a red (blue) point to lie inside the ellipse, M1,M2,Mu (M1,M2,Mq) have to be heavier

than ∼ 7.5, 7.0, 4.9 TeV (∼ 3.9, 4.7, 4.2 TeV), respectively.

A heavy SM-Higgs gives an extra negative T and a positive S [23]. Thus it points in

the wrong direction and gives stronger constraints for the LWSM. As shown in sections 4.1

and 4.2, the contributions from the LW-Higgs can not alleviate this situation.
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Figure 4: Values of the LW-masses allowed by the EWPT (95% Confidence Level contour). The

region above the lines is allowed by the EWPT and the region below the lines is forbidden. On the

left we show the plane (Mq,Mu) for fixed values of the LW-vector masses. The red lines correspond

(from left to right) to M1 = M2 = 7, 6, 5TeV. The dashed green line to M1 = 10,M2 = 4TeV, and

the dot-dashed blue line toM1 = 4,M2 = 10TeV. On the right we show the plane (M1,M2), for fixed

LW-fermionic masses. The red lines correspond (from left to right) toMq = Mu = 7, 6, 5, 4TeV. The

dashed green line to Mq = 10TeV and Mu = 4 TeV, and the dot-dashed blue line to Mq = 4TeV

and Mu = 10TeV.

In figure 4 we show the LW-fermionic masses Mq,Mu allowed by the EWPT for fixed

values of M1,2. We have considered the 95% confidence level constraints on the S, T pa-

rameters. The lines divide the parameter space in an upper region allowed by the EWPT

and a lower region that does not pass the EWPT.

In order to obtain a rather light LW-fermion, for example an SU(2)L singlet, ũ, with

a mass of order 2.5 − 3TeV, we are forced by the EWPT to have heavy LW-vectors and

also a heavy LW-fermion doublet, q̃, with masses larger than ∼ 5TeV.

In figure 4 we show also the LW-vector masses M1,M2 allowed by the EWPT for

fixed values of Mq,u. The regions above (below) the lines (do not) pass the EWPT. To

obtain a light vector the other vector and the fermions are forced to be heavy, with masses

larger than ∼ 5− 6TeV. In any case the LW-vector masses can not be lighter than 3TeV.

The lightest vectors are slightly heavier than the lightest fermions, as they give larger

contributions to S. In general the LW-vector B̃ can be lighter than W̃ . This is because,

given a positive S, the EWPT prefer a positive T , that is generated by B̃ and not by W̃ .

6. Extending the LWSM with a fourth generation

We consider in this section a very simple extension of the LWSM that can provide positive

contributions to T and a rather small S. We add a fourth generation of fermions with the

same quantum numbers and chiralities as the ordinary SM generations, together with their

– 11 –
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Figure 5: 68% and 95% Confidence Level contours in the (S, T ) plane, and predictions of the

LWSM with a fourth generation. The vector LW-masses are fixed to 3TeV and Mq ≃ 1.5TeV. The

Yukawas and fermionic LW-masses take values in the range 0.2 − 1.5TeV.

LW-partners. The important terms in the Lagrangian for the EWPT are still described

by eqs. (2.2) and (2.4), with a generation index including the fourth generation. For

simplicity we will consider that Mψ, acting on a space of dimension four, is still proportional

to the identity. Therefore, the only new parameters are the Yukawa couplings of the

fourth generation. We will consider only the effects of the quarks of the fourth generation,

moreover, it is very simple to include the leptons to cancel the anomalies. Ignoring for the

moment the mixings between the SM-fermions and the fourth generation, the new physical

effects are contained in m4
u,d = λ4

u,d v/
√

2.

As explained in section 4.4, a generation of SM-quarks with a rather small isospin

splitting produces a S ∼ 0.1, whereas vector-like quarks do not produce S in the limit

of no isospin splitting. Moreover, for a rather large isospin splitting the S parameter

generated by SM-quarks decreases and the S generated by vector-like quarks remains very

small, S . 0.04 for mN . 2mE . Therefore, taking into account the results for the minimal

LWSM, an extra small contribution to S can be consistent with the EWPT if there is also

a small and positive contribution to T .

The T parameter generated by new fermions is proportional to the isospin splitting

of the new sector. Thus the splittings in the Yukawas of the fourth generation and in the

LW-sector produce contributions to T . Since the mass of the down quark of the fourth

generation can be large, T has a strong dependence with Md in this case. The T parameter

generated by a fourth generation with their LW-partners, without constraints in the isospin

violation, will be in general of order 1, much larger than the needed T . We have checked
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4

d) plane satisfying the EWPT at the 95% Confidence Level in the

LWSM with a fourth generation. The line corresponds to m4

u = m4

d.

that this is indeed the situation in the present proposal. Therefore, to generate a positive

T of the appropriate size, it is necessary to constrain the isospin splitting.

It is immediate to extend the results of sections 4.3 and 4.4 to include the one loop

effects of a fourth generation. We have scanned over the parameter space fixing the vector

LW-masses to be of order ∼ 3 TeV, in order to suppress the large tree level contributions

to S and T . It is found that a heavy Mq ∼ 3− 4 TeV is preferred by the data, but a lower

Mq ∼ 1.5 TeV is still consistent with the EWPT for light m4
u,d and Mu,d.

In figure 5 we show the 68% and 95% Confidence Level contours in the (S, T ) plane

together with the predictions of the LWSM with a fourth generation. We have considered

Yukawas and fermionic LW-masses in the range 0.2 − 1.5 TeV. The first thing one can

notice is that a much larger region of the ellipses in the (S, T ) plane is covered in this

case, compared with the figure 3 of the minimal LWSM. Also there is a rather large range

of values of T covered, as expected if there is no restriction in the isospin splitting. A

heavier Mq, ∼ 3TeV, increases T , allowing a larger overlap between the dense region and

the ellipses.

In figure 6 we show the regions in the plane (m4
u,m

4
d) preferred by the EWPT. We

find that the isospin violation due to the Yukawas of the fourth generation has to be rather

small, satisfying the approximate relation
|m4

u−m4
d
|

m4
u+m4

d

∼ 0.3. On the other hand, since the

effect from the LW-fermions is much smaller, the constraints in the isospin splitting are

much weaker for this sector. We find that there are no regions excluded in the (Mu,Md)

plane, provided that Mu and Md are larger than ∼ 0.4 TeV.
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7. Conclusions

We have performed a careful scan over the parameter space of the minimal LWSM and have

determined the regions that pass the EWPT. The most stringent constraints come from the

S and T Peskin-Takeuchi parameters. In particular, the most important restrictions come

from the tree level contributions to S and T and from the one-loop fermionic contribution

to T .

We have shown that it is necessary to choose very specific values of the LW-masses to

obtain light LW particles that could eventually be discovered at the LHC. The masses of

the vectorial LW-particles are always of order 3.2 TeV or heavier, with the lightest value

obtained at the price of rising the masses of the fermionic LW-particles to be at least of

order 6 − 8 TeV. The fermionic spectrum of LW-particles can be somewhat lighter than

the vectorial one, and it is possible to have fermions with masses as low as 2.4 TeV. This

can be done rising the LW-masses of the other fermions and vectors to be at least of order

5−8 TeV. Whether these heavy states could be produced and detected at the LHC deserves

a careful study, some analysis has been done in refs. [19, 21].

The only possible exception to the previous bounds may be the down LW-fermion,

whose mass is not well constrained. Since the bottom Yukawa is small, the EWPT do not

give important restrictions on Md. Although the model does not explain the origin of the

LW-masses, we can expect that the same mechanism gives masses to all the LW-fermions.

In this case Md may be of the same order as the other fermionic masses Mu and Mq.

The degree of tuning of the model depends on the scale Λ where new physics beyond

the LWSM shows up. For degenerate LW-masses, and in the most favorable case, with a

small Λ ∼ O(10 TeV), we estimate a degree of tuning that is at least of order a few per cent

(see the last paragraph of section 2). For larger Λ the tuning becomes of order a few per

mille. In the scenario where a little hierarchy in the LW-spectrum is allowed, the degree of

fine-tuning increases to order a few per mille already with a small Λ. Thus, although the

LWSM can solve the hierarchy problem by cancelling the quadratic divergences of the SM,

to pass the EWPT with its minimal version one has to reintroduce some degree of tuning.

The constraints from the EWPT can be relaxed extending the minimal LWSM in such

a way that there is an extra positive contribution to T without increasing much, at the same

time, the S parameter. We have shown that this can be done including a fourth generation

of fermions with its LW-partners. Without any assumption in the isospin violation of

the fourth generation Yukawas and in the LW-fermionic sector, the generated T is too

large. Our study shows that the effect of isospin violation from the Yukawas is larger

than the effect from the LW-fermions. To generate the appropriate T one has to impose

an approximate custodial symmetry for the Yukawas. The amount of isospin violation

required by the data is of order 30%. We have considered vector LW-masses of order 3TeV

to suppress the tree level S and T , and we have shown that in this case the fermionic

LW-masses can be as small as ∼ 0.4 − 1.5 TeV. Therefore, with this very simple extension

it is possible to obtain a LWSM that can be tested at the LHC. A careful study of this

scenario and other possible extensions beyond the minimal LWSM is needed.
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A. Diagonalization of the fermionic mass matrix

We consider the diagonalization of the fermionic mass matrix of the third generation. We

collect the up fermions into a three dimensional vector in the following way:

ψu tL = (quL, q̃
u
L, ũL) ψu tR = (uR, ũR, q̃

u
R) , (A.1)

and similarly for the down fermions. We adopt the same basis as [20], but with a different

notation. Using eq. (A.1) we can write the quadratic fermionic Lagrangian (2.2) as:

L2ψ = ψ̄ui 6∂ηψu − ψ̄uRMuηψ
u
L − ψ̄uLηM†

uψ
u
R + . . . , (A.2)

where the dots stand for the down sector, η = diag(1,−1,−1) and

Muη =







mu −mu 0

−mu mu −Mu

0 −Mq 0






(A.3)

The mass matrix Mu can be diagonalized by independent left and right symplectic

rotations SL,R satisfying:

Mu,physη = S†
RMuηSL , SRηS

†
R = η , SLηS

†
L = η , (A.4)

where Mu,phys is the physical mass matrix, which is diagonal.

To obtain explicit analytic expressions we expand the solutions in powers of Yukawa

insertions mu,d. Thus our results are well approximated by the first terms in this expansion

in the limit ǫq,u = mu

Mq,u
≪ 1. For the elements of the diagonal matrix Mu,phys we obtain

the following:

mu

[

1 +
1

2
(ǫ2q + ǫ2u) +

1

8
(7ǫ4q + 7ǫ4u + 10ǫ2qǫ

2
u)

]

+ O(ǫ6q,u) , (A.5)

Mu

[

1 − ǫ2u
2

M2
q

M2
q −M2

u

− ǫ4u
8

5M6
q − 9M4

qM
2
u

(M2
q −M2

u)3

]

+ O(ǫ6q,u) , (A.6)

Mq

[

1 +
ǫ2q
2

M2
u

M2
q −M2

u

+
ǫ4q
8

5M6
u − 9M4

uM
2
q

(M2
q −M2

u)3

]

+ O(ǫ6q,u) . (A.7)
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For the matrices SL,R we obtain

SL − 1 = (A.8)














ǫ2u
2 +

4 ǫ4q+8 ǫ2q ǫ
2
u+11 ǫ4u

8

−(ǫ8q (4 ǫ2q−7 ǫ2u))
2 (ǫ2q−ǫ2u)

3 +
ǫ4q

−ǫ2q+ǫ2u
−ǫu−

ǫ5u (−4 ǫ2q+3 ǫ2u)
2 (ǫ2q−ǫ2u)

2

−ǫq2−
ǫ2q (4 ǫ2q+3 ǫ2u)

2

−(ǫ4q ǫ2u)
2 (ǫ2q−ǫ2u)

2 +
ǫ8q (4 ǫ4q−16 ǫ2q ǫ

2
u+23 ǫ4u)

8 (ǫ2q−ǫ2u)
4

ǫ2q ǫu (−2 ǫ4q+4 ǫ2q ǫ
2
u−2 ǫ4u)

2 (ǫ2q−ǫ2u)
3 +

ǫ2q ǫu (4 ǫ2q ǫ4u−ǫ6u)
2 (ǫ2q−ǫ2u)

3

−ǫu−
ǫu (2 ǫ2q+3 ǫ2u)

2

ǫ6q ǫu (2 ǫ2q−5 ǫ2u)
2 (ǫ2q−ǫ2u)

3 +
ǫ2q ǫu

ǫ2q−ǫ2u
ǫ4u (−2 ǫ2q+ǫ

2
u)

2 (ǫ2q−ǫ2u)
2 +

ǫ8u (36 ǫ4q−36 ǫ2q ǫ
2
u+11 ǫ4u)

8 (ǫ2q−ǫ2u)
4















SR − 1 = (A.9)














ǫ2q
2 +

11 ǫ4q+8 ǫ2q ǫ
2
u+4 ǫ4u

8 −ǫq−
ǫ5q (3 ǫ2q−4 ǫ2u)
2 (ǫ2q−ǫ2u)

2

ǫ4u
ǫ2q−ǫ2u

+
ǫ8u (−7 ǫ2q+4 ǫ2u)

2 (ǫ2q−ǫ2u)
3

−ǫu2− ǫ2u (3 ǫ2q+4 ǫ2u)
2

ǫq ǫ
2
u (ǫ6q−4 ǫ4q ǫ

2
u)

2 (ǫ2q−ǫ2u)
3 +

ǫq ǫ
2
u (2 ǫ4q−4 ǫ2q ǫ

2
u+2 ǫ4u)

2 (ǫ2q−ǫ2u)
3

−(ǫ2q ǫ4u)
2 (ǫ2q−ǫ2u)

2 +
ǫ8u (23 ǫ4q−16 ǫ2q ǫ

2
u+4 ǫ4u)

8 (ǫ2q−ǫ2u)
4

−ǫq−
ǫq (3 ǫ2q+2 ǫ2u)

2

ǫ4q (ǫ2q−2 ǫ2u)
2 (ǫ2q−ǫ2u)

2 +
ǫ8q (11 ǫ4q−36 ǫ2q ǫ

2
u+36 ǫ4u)

8 (ǫ2q−ǫ2u)
4

ǫq ǫ
6
u (5 ǫ2q−2 ǫ2u)
2 (ǫ2q−ǫ2u)

3 − ǫq ǫ
2
u

ǫ2q−ǫ2u















The solution for the down-sector can be obtained from the up-sector simply by changing

u→ d.

The authors of ref. [20] considered the case Mq = Mu. Their solutions can not be

obtained from the case Mq 6= Mu that is singular in the limit Mq → Mu. There is a

singularity because in that limit there is a degenerate eigenspace of dimension two, with

no preferred eigenvectors.

B. Mass insertion resummation of the flavor propagators

In this appendix we provide expressions for the flavor propagators to all orders in the mass

insertions. Due to the mixings between SM and LW-fermions, the fermionic propagators

are also mixed in the flavor basis in the mass insertion expansion. The resummation of the

mass insertion series can be performed and the flavor propagators shown in eq. (B.7) are

those used in sections 4.3 and 4.4 to compute the full radiative fermionic contributions to

T and S respectively. We illustrate the method for resumming the mass insertion series

with a particular example. Other cases are simple variations of the one discussed below

and they can be obtained by using the same procedure.

Consider the case of the resummed propagator (S̃qu) of a SM up-fermion in a SU(2)L
doublet. The first three terms of the series are shown in figure 7. The first term corresponds

to the zeroth order propagator (Sq) which is obtained from the SM kinetic term in the

Lagrangian given by eq. (2.2):

L2ψ ⊃ q̄Li 6∂qL , (B.1)

and it takes the form:

S̃
(0)
qu ≡ Sq = PL

1

6p , (B.2)

where PL = (1 − γ5)/2. The following two terms in the expansion, containing at least two
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S̃qu

=

Sq

+

Sq u−ũ Sq

+

Sq u−ũ q−q̃ u−ũ Sq

+ . . .

Figure 7: Expansion in mass insertions of the propagator (S̃qu) of a SM up-fermion in the SU(2)L

doublet. Sq stands for the qu propagator with no mass insertions. Besides, u− ũ (q− q̃) corresponds

to internal zeroth order propagators for uR (qu) and ũR (q̃u).

mass insertions, can be derived by taking into account the mixing mass term:

L2ψ ⊃ mu(ūR − ¯̃uR)(quL − q̃uL) . (B.3)

The first and second order propagators in mass insertions are found to be respectively:

S̃
(1)
qu = m2

uPLSq(S + Sũ)PLSq = m2
uSq 6pPLSqAu , (B.4)

S̃
(2)
qu = m2

uPLSq(S + Sũ)mu(Sq + Sq̃)mu(S + Sũ)PLSq = m2
uSq 6pPLSqAu(m2

up
2AqAu) ,

where Au and Aq, and the zeroth order propagators for uR, ũR and q̃ (S, Sũ and Sq̃
respectively) are given by:

Au ≡ 1

p2
− 1

p2 −M2
u

, Aq ≡
1

p2
− 1

p2 −M2
q

,

S ≡ PR
1

6p , Sũ ≡ − 1

6p+Mu

, Sq̃ ≡ − 1

6p+Mq

, (B.5)

with PR = (1+γ5)/2. Notice the extra minus sign and the absence of any chirality projector

in Sq̃ and Sũ. From the results in eq. (B.4), it is not difficult to infer the generic n-th term

and the sum of the series can be obtained:

S̃qu = Sq +m2
uSq 6pPLSqAu

∞
∑

n=0

(m2
up

2AqAu)
n

= Sq +
m2
uSq 6pPLSqAu

1 −m2
up

2AqAu
. (B.6)

Note that S̃qu has only an even number of mass insertions.

Following similar arguments, it is possible to obtain all the resummed flavor propaga-

tors. For SM and LW fermions of the third generation, charged under SU(2)L, there are

four different types of propagators arising from an even number of mass insertions. Initial

and final legs carry the same SM (S̃q) or LW-fermion (S̃q̃), or they are attached to different

fermions: the initial leg is a SM (S̃qq̃) or a LW-fermion (S̃q̃q) –the subscript q (q̃) stands

for up or down SM (LW) fermions in the SU(2)L doublet. This class of propagators enters

the calculation of both S and T parameters. The computation of the vacuum polarization

contributions to S also requires propagators with an odd number of mass insertions that

can be obtained with the same method outlined above. There are four relevant types of

them according to all possible combinations of SM and LW fermions in the SU(2)L dou-

blet and up or down singlets coupled to hypercharge (M̃q(u,d), M̃q(ũ,d̃), M̃q̃(ũ,d̃) and M̃q̃(u,d)).
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Those obtained by interchanging initial and final legs (M̃ij → M̃ji) are needed as well. Re-

summing all possible insertions of mixing mass terms, we obtain the following expressions

for propagators in the up-sector:

S̃qu(p) = Sq +
m2
uSq 6pPLSqAu

1 −m2
up

2AqAu
, S̃q̃u(p) = Sq̃ +

m2
uSq̃ 6pPLSq̃Au

1 −m2
up

2AqAu
,

S̃quq̃u(p) = −m
2
uSq 6pPLSq̃Au

1 −m2
up

2AqAu
, S̃q̃uqu(p) = −m

2
uSq̃ 6pPLSqAu

1 −m2
up

2AqAu
,

M̃quu(p) = − muSqPRS

1 −m2
up

2AqAu
, M̃quũ(p) =

muSqPRSũ
1 −m2

up
2AqAu

,

M̃q̃uu(p) =
muSq̃PRS

1 −m2
up

2AqAu
, M̃q̃uũ(p) = − muSq̃PRSũ

1 −m2
up

2AqAu
, (B.7)

where Sq, S, Sũ, Sq̃, Au and Aq have been defined in eqs. (B.2) and (B.5). M̃ji has a similar

expression to M̃ij , only the place of the zeroth order propagators must be interchanged as

in the case of S̃quq̃u and S̃q̃uqu . Note that the series for M̃ij and S̃ij start from one and two

mass insertions respectively since the kinetic terms are flavor diagonal.

The fermionic spectrum of the up-sector is given by the poles of S̃qu .

Flavor propagators for the down-sector are obtained from those above by changing

u→ d in eqs. (B.7).

C. Fermionic contribution to the vacuum polarization

We show in this appendix the fermionic contributions to the vacuum polarization associated

to the S and T parameters:

S =
16π

g1g2
Π′

3B(0) , T =
4π

g2
2s

2c2m2
Z

[Π11(0) − Π33(0)] , (C.1)

with Πµν = gµνΠ + (qµqνterms).

We consider first the perturbative expansion of Π33 from figure 2(c). Since uR, dR and

their LW-partners are singlets of SU(2)L, and the gauge interactions do not mix SM and

LW-fermions, the fermionic legs attached to one of the gauge vertices correspond either

to q or to q̃. However, it is possible to have q-legs attached to one of the vertices and

either q or q̃-legs attached to the other vertex, and similar for q̃. Using the propagators

of appendix B we can write the up contribution to Π33 to all orders in the mass insertion

expansion as:

Πµν
33 = −g

2
2

4
tr

∫

d4p

(2π)4
(γµS̃quγνS̃qu + γµS̃q̃uγνS̃q̃u − 2γµS̃quq̃uγν S̃q̃uqu), (C.2)

and a similar contribution from the down sector. The minus sign in the last term is

because the LW-fermions couple to the SM-gauge fields with a sign flip compared with the

SM-fermions, see eq. (2.4).

The contributions to Π11 can be obtained in a similar way, and is given by:

Πµν
11 = −g

2
2

2
tr

∫

d4p

(2π)4
(γµS̃quγνS̃qd + γµS̃q̃uγν S̃q̃d − 2γµS̃quq̃uγν S̃q̃dqd). (C.3)
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The S parameter is proportional to Π′
3B(0). The fermionic contribution to Π3B is

more involved because the fermions uR, dR and their LW-partners couple to hypercharge.

Therefore we have to consider the diagrams of figures 2(b) and (c). The contribution from

figure 2(c) is similar to Π33, with the appropriate charges:

Πµν
3B = −g1g2

12
tr

∫

d4p

(2π)4
(γµS̃quγνS̃qu + γµS̃q̃uγνS̃q̃u − 2γµS̃quq̃uγν S̃q̃uqu), (C.4)

and a similar contribution from the down sector with a minus sign due to the different

weak charge.

Figure 2(b) gives contributions with q, q̃-legs attached to W3 and the singlets

uR, dR, ũ, d̃ attached to B. Using the propagators of appendix B, the up contribution

to Π3B , to all orders in the mass insertion expansion, is:

Πµν
3B = −g1g2

3
tr

∫

d4p

(2π)4
× (C.5)

×(γµM̃quuγ
νM̃uqu − γµM̃quũγ

νM̃ũqu − γµM̃q̃uuγ
νM̃uq̃u + γµM̃q̃uũγ

νM̃ũq̃u).

The contribution from the down sector can be obtained from eq. (C.5) by changing the

factor 1
3 by 1

6 and changing the indices u→ d.
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